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Friction in the zero sliding velocity limit
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Using an adiabatic approximation method, which searches for Tomlinson model-like instabilities for a
simple but still realistic model for two crystalline surfaces, with mobile molecules present at the interface,
sliding relative to each other, we are able to account for the virtually universal occurrence of “dry friction” at
zero temperature. A modified version of this method allows us to calculate the kinetic friction at nonzero
temperature as well. We have also considered the static friction, and have demonstrated that the model is able
to account for static friction being larger than kinetic friction.
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[. INTRODUCTION centration of single globular molecules adsorbed at an inter-
face between two triangular lattice surfaces rotated at an ar-
Muser and co-workers have argued that clean surfacdsitrary angle such that the interface is incommensurate.
should not exhibit static frictiohl] at the point of contact of While the triangular lattice surfaces considered in RBf.
an asperity from each surface, but the presence of mobilmight be more realistic, the square lattice surface model is
moleculegso called “third bodies] at the interface can lead much simpler, allowing us to get more insight into this prob-
to static friction. This is a surprising result because one usulem without having to deal with the additional complications
ally expects such lubricant molecules to reduce rather thaof the triangular lattice model. Therefore, in this work, we
enhance friction. On the other hand, if the mobile moleculeswill initially consider surfaces that are square lattices. In re-
are much more strongly attached to one surface than thglity, the interasperity interface that we are trying to model is
other, they will act as randomly distributed pinning sites be-more likely to be disordered than periodic or quasiperiodic,
longing to the surface to which they are strongly attachedgnq nence, both of these periodic surface models represent
and it was argued in Ref2] that molecular level random only a first step towards a truly realistic treatment of this
defects on the surface will not lead to static friction. Thus, ayroblem.
important ingredient in these molecules leading to static fric- The model we have have studied consists of two rigid

tion is the relative strength of the interactions of the lubricanty | . < \vith a dilute concentration of particles trapped be-

molecules with .the two surfaces. In" the present WOI’!(, W&yveen them. To zeroth order, we neglect the particle-particle

concentrate mainly on the study of “dry friction(i.e., ki- . . . :
interactions. The surfaces are represented by two identical

netic friction in the slow sliding speed limitIf a dilute wodi onal iodi tential hich tated rel
concentration of molecules is initially randomly distributed wo-dimensional periodic potentials, which are rotated rela-
tive to each other at an arbitrary angle, as this is the usual

over the interface, they will in time diffuse to the deepest™ = ™ ) ) ;
potential wells. These occur at the locations on the interfacdituation at an interface. We model the potential function
at which potential minima from the two surfaces nearly co-acting on a mobile molecule due to each surface by the
incide, as the potential at the interface will be minimum Steele potential6]. To a good first approximation, the po-
there. As the surfaces slide relative to each other the minimigntial may be represented by the lowest-order term in the
from the two surfaces producing the potential minimum oc-Fourier series for it.
cupied by this molecule will no longer coincide, and at some  In Ref.[5], the problem was studied at zero temperature.
point during the sliding, the minimum often becomes un-In the present paper, the method is discussed in more detail
stable(i.e., ceases to be a minimypallowing the molecule and is extended to nonzero temperature. At zero temperature,
to drop into a deeper minimum. This is considered as thdrictional dissipation comes about because as the surfaces
source of energy dissipation due to kinetic friction in theslide relative to each other, the interface potential well mini-
slow sliding speed limit. It was argued by Caroli and co-mum in which each mobile molecule resides eventually be-
workers, based on an earlier suggestion by Brillouin and byomes unstable, allowing the molecule to drop to a lower
Tomlinson[3] that without multistability there is no static or energy well.(In this paper, the term interface potential well
dry friction. The existence of dry friction due to Tomlinson- refers to the potential, +v,, due to the two surfacesThe
like potential instabilities has been studied in both one andinetic energy so generated is assumed to get quickly dissi-
two dimensions using molecular dynamjdd. We have pre- pated. At nonzero but low temperatures the molecule can
sented a way to study dry friction for the model of Rff]  drop to a lower well before the well that it presently occupies
(see Ref[5]). Our method treats the problem in the slow becomes unstable by hopping over the potential barrier sepa-
sliding velocity (i.e., the adiabaticlimit quite naturally. It  rating it from the deeper well. At very high temperatures, in
also makes it possible to study the important question of theontrast, it can get just as easily thermally excited back up
relationship between static and dynamic friction. into the higher well, making the higher interface potential
In Ref. [5], we initially studied the case of a dilute con- well under consideration no longer contribute because it no
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longer represents a metastable state of the molecule unde (7
consideration.

Il. THE SEARCH FOR INSTABILITIES 0

We model the potential function acting on a mobile mol-
ecule due to each surface by the Steele poteffirlTo a
good first approximation, the potential may be representec
by the lowest-order term in the Fourier series for it. For one )
surface(surface }, it is given by

(&)}
O )

FIG. 1. (Color onling (a) A contour plot of the interface poten-
iGor tial for square lattice surfaces for a typical displacement of the
vl(x,y)=V0% e surfaces for surfaces of equal strength, for 7.5° and6=22.6°.
The x andy axes are in units of a lattice consta¢ti) The contour
=2Vy{cog (2w/a)x]+cog (2w/a)y]}, (1) plot of (a) plotted over a smaller range a&fandy. Unstable wells
are seen in the row of relatively shallow wells in the middle of the
where the vectorss denote the smallest reciprocal lattice figure.
vectors of a square lattice of lattice constargndV is the
strength of the potential. As mentioned in the Introduction,gain of kinetic energy, which is assumed to get quickly trans-
we will initially discuss results for the square lattice, in orderferred to phonons and electronic excitations of the surfaces.
to clarify the physics of the problem because the physics ofAs the surfaces continue to slide relative to each other, the
the square lattice model is easier to understand. For all positepth of the new minimum occupied by the molecule de-
tive loads,V, is positive. This is easily seen to be correct creases and the potential eventually becomes unstable so that
because the maxima of the expression in curly brackets ithe process described above repeats itself. This is our mecha-
Eq. (1) occur at the positions of the atoms making up surfacerism for frictional energy dissipation. We will refer to the
1. Clearly, the adsorbed molecules would be expected to ligact that each potential well is able to become unstable as the
in the interstitial positiongwhere the quantity in curly brack- surfaces slide relative to each other as instability renewal. If
ets is minimum. This is easily verified by explicit calcula- it does not occur for a particular model for the surface po-
tion using the Steele potentigb], which is a reasonable tentials, there will be no dissipation for long time sliding,
approximation for the potential of interaction between anpecause the molecules will get sorted into potential wells
adsorbed molecule and a crystalline surface. We chose faghich never become unstable as the surfaces slide. We have
the potential of the second surfatrurface 2 the potential  done extensive studies of this problem for the surface poten-
given in Eq.(1) rotated by¢ and translated byXx,Ay).  tial in Eq. (1) using this method, but it is equally applicable
Then this potential is given by,(x,y)=vy(x',y’), wherex’  to any two periodic or disordered potentials, representing the
=(X+Ax)cos)+(y+Ay)sin(¢) andy’ = —(x+Ax)sin(¢)  two surfaces.
+(y+Ay)cos(p), where, ¢ is the rotation angle, and the dis-  Before discussing the numerical procedure for calculating
placement parameterdx and Ay are given by AX  the frictional energy loss and from it the force of kinetic
=sycos(@)+bsin(@) and Ay=sysin(d)—bcos@). Here, s friction, let us first present some plots of the potential which
=vt, wherev is the velocity of sliding of surface 2 relative illustrate how this process occurs and why we feel that it is
to surface 1 along a direction making an anglevith thex  reasonable to expect it to occur for general surfaces in con-
axis. The maximum at the origin of surface 2 is movingtact. They are presented in Fig. 1. It is easy to see from Fig.
along a path displaced a distanigethe distance of closest 1(a), as a consequence of the rotation of the surfaces relative
approach, normal to the path passing through the minimunto each other, that the interface consists of Mqudterns
at the origin of surface 1. with domains in which the interface potential is relatively
Since we are neglecting intermolecular interaction, wedeep separated by domain wall boundaries, in which the net
study a single molecule placed at random within the Wignerpotential is relatively shallow because on these boundaries
Seitz unit cell of surface 1 at a time. We assume that eacthe potentials from the two surfaces tend to cancel each
molecule will move to the nearest minimum®f+uv,. The  other. When instabilities occur, they do so on these domain
resulting potential minimum reaches its lowest value wherboundaries. Such an instability is illustrated in Figb)1
the two surfaces have slid until a minimum of and a By studying the evolution of the interface potential wells
minimum of v, are at their distance of closest approach.as the surfaces slide relative to each other, we can look at the
Therefore, the resulting potential minimum can only becomdssue of instability renewal raised earlier in this section. We
unstable and disappear after this point, since before it thénd that as the surfaces slide relative to each other, potential
minimum is getting deeper. Thus we need only begin oumwells within a domain boundary become unstable, allowing
search for instabilities for wells that are at their distance ofany molecule that might occupy such a well to drop to a
closest approach. Because this potential is a function of timejeeper well. Eventually, the domain boundary moves away
the existence of these minima is time dependent. As a minifrom the the well that the molecule presently occupies, and
mum containing a particle disappears, the particle will dropthe well becomes located closer and closer to the center of a
to another potential minimum of lower energy, resulting in adomain. As it does so, it becomes deefigr., more stable
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as this is the characteristic of wells in the center of a domain. v 9% 9%

Eventually, however, another domain wall will move towards —= (3b)
. . : ay ay axay

the vicinity of this well. As this occurs, the well becomes pp pp

too becomes unstable, allowing the process to repeat.

In this work, the unit cell for each surface is chosen to be X 1d%| | | v (43
a Wigner-Seitz unit cell with a potential minimum located at D | dy?|PP ox axay|PPay| |’
its center. We begin our search with a potential minimum of PP PP
the top surface at the same location in thg plane as a 1[6%v| v 9v dv
minimum in the bottom surface. We now slide the two sur- oy = D! ax? pp& pp_axay pp& - , (4b)

faces relative to each other by the vector witandy com-
ponentsAx and Ay defined below Eq(1) and determine if where D, known as the Gaussian curvatuffer extremum
any of the minima have become unstable. As noted earliepoints, is evaluated at the poink{,,y,,). The derivatives
such instabilities are responsible for dry friction. in Eq. (4) are found from the potential, + v, defined in Eq.

In order to locate minima, and to track their positions and(1) and in the discussion under it. If the particle is close to
stability as our surfaces slide past one another, we first pladée minimum, this procedure converges very quickly to the
a particle at a random position at the interface and use &ue minimum. How quickly it converges, however, is depen-
Monte Carlo routine to move it to the nearest potential mini-dent on the size of the quantify. _
mum. In order to predict where a minimum will move during _ The second derivatives of the potential form a two-
sliding, we use the fact that the force on a particle at thelimensional second-rank tensor, which is diagonal for appro-
potential minimum(x,(t),Yo(t)) remains identically zero for priate orientation of the coordinate ax(ase._, the principal
all time in the adiabatic approximation to find velocity at 2¥€$; D is equal to the product of these diagonal elements.

which the minimum is moving. Details of this procedure can | "€ XX component defines a parabola along xhgirection,
be found in Ref[5]. and theyy component defines another along thdirection.

If both components are positive, one has a minimum; if both

b . . : .~ ‘are negative, one has a maximum, and if one is positive and
ased on the Taylor SEres expansion of the potential Wh'cﬁne is negative, then one has a saddle point. When one of the
allows us to search for minima and evaluate whether a par '

ol - . ble. Th d-order Tavl "“eigenvalues, and hend®, becomes zero, we can have an
ticular minimum Is unstable. The second-order Taylor Series,giapjjity if the third-order terms in the Taylor series expan-

expansion of the potential, assumed to be with respect to thgon of the potential around the critical point under consid-

location of the nearest minimum, eration are nonzero. If the third-order terms are zero, we can
have a fourth-order minimum or maximum if the fourth or-
der terms are nonzero.

sy Our method allows us to track the position of a minimum
until it becomes unstable, at which point we can locate the
new minimum into which an unseated particle will next fall.

The main part of our procedure is an iterative method,

P
o

_ N Jv
v(X,Y)=v(Xg,Yo) X .

8%v ) v ) 2 This allows us to calculate the drop in potential energy that
+(1/2) 2| X Hl/z)@ﬁ oy +axay oXdY,  such a particle would undergo. The total frictional energy
0 0 0

loss between our two surfaces is the sum of these energy
(2)  drops over all of the particles. The quasiperiodic nature of

the interface allows us to consider all possible interface po-

tential minima, which are possible positions of molecules on
is now used to determine more accurately the location of théhe surface, and all possible sliding distances of the two sur-
new minimum. The first-order derivatives vanish, since wefaces relative to each other simply by studying the behavior
assume that we are expanding about the true minimum. Thef the potential minima in a single unit cell of surface 1 as a
second-order derivatives can, to second-order, be replaced single minimum from surface 2, which initially coincided
the second-order derivatives at the present position of thwith the minimum at the origin of the unit cell of surface 2,
particle, provided we are close to the actual minimum. Thewhich is under consideration, slides in all possible directions.
quantities x=(Xpp—Xo) and dy=(ypp—Yo) are then the The vectorAr=(Ax,Ay), the translation of the centers of
approximate distances, along tkandy directions, between the two unit cells under consideration relative to each other
the particle’s present position, and where the actual mini&t Which unstable minima occur at some point in the unit cell
mum is. In order to use the force components felt by thd@!lS on the curve, which surrounds the point of initial coin-
particle at its present location to fin and dy, we differ- cidence of the centers of the two cells. We will refer to this

entiate the above second-order approximation with respect £0° the instability curve, which is shown in Fig(ap The'
bothx andy, obtaining an approximation for the force com- o_verlap Of. these minima f_rom .Sl.”face 1 and S“r_ff'"ce 2 gives
ponents ne:elr the true minimum rise to an interface potential minimum for all positions of the

minimum from surface 2 under consideration within the in-
terior of the instability curve. Outside of this curve, there can

6y I 920 be no interface minimum resulting from these two surface
ol + %0 oY, (3a) minima (but there can still be one resulting from a different
X *lop XY lpp pair of minima. Since the instability curve surrounds the
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! ‘ ‘ 15 lations based on the Langevin equation in SecAH, is the
lowest potential barrier surrounding the potential well that
we are considering. In order to firklE,,, we diagonalize the
matrix of the second derivatives of the potential evaluated at
the potential minimum, as described above. This allows us to
determine the principal axes of the potential. The principal
axis corresponding to the lowest eigenvalue of this matrix is
likely to be close to the direction in which the barrier is
-4 -2 0o 2 4 lowest. We then do a search for a saddle point of the poten-
@) ®) sliding direction tial, focusing our search in this direction. The saddle point
that we find is the minimum energy barri#E,, , which must
for ¢=7.5° is the outermost curve; the one inside of it is the ef‘fec-be overcome in order for a molecule Io_cated in the potentlal
tive instability curve forkgT/V,=0.05; the one inside this curve is well to get out of the well and then fall into a potential We.”
for kgT/V(=0.2; and the innermost curve is fog T/Vy= 0.4 Units Of _Iower energy. We found, r_]ovyevt_ar, that this does n_ot SI9-
of x andy axes are fractions of a primitive lattice vector. The miss- nificantly aﬁec_t the energy d'SS'_pat'on because even_ if there
ing parts of theT#0 instability curves represent values @ffor ~ Were no hopping over the barrier, the well would still at a
which the energy drop is so small that the molecule hops back to thiter time become unstable. As a result, the resulting energy
higher potential well almost as rapidly as it drops to the lower onedissipation tends to be comparable to that at zero tempera-
These curves have been rotated $§2 in order to make them ture. As the temperature becomes comparable (i) (AE
appear symmetrical. This is equivalent to rotating the top surface by- AEy), where AE is the energy difference between the
/2 and the bottom one by ¢/2, rather than rotating only the top higher and lower potential well minima, the molecule is
surface bye¢. (b) The energy drop occurring in an instability in quite likely to hop back into the higher potential well shortly
units of 2V, vs the anglgin degrees § betweenAr and the hori-  after it has dropped to the lower one. This will occur as long
zontal axis of a. The tallest curve is f@r=0; the curve for for  as the rate of hopping back to the higher well, which is of the
kgT/V(=0.05 falls essentially on top of that far=0; the next order ofwoe*(AEJrAEb)/kBT (herewy is the frequency of the
tallest is forkgT/Vo=0.2; and the lowest curve is fdtsT/Vo  order of the vibrational frequency for the molecule in the
=0.4. lower well), is large compared to/a. This criterion deter-
mines «(v). In Fig. Za), we plot the instability curve for
origin, there will be friction for almost all directions of slid- T=0. ForT>0, we plot an effective instability curve. This
ing (i.e., values off). During the sliding, as the minimum is a curve made up of positions of the minimum from surface
from surface 2 slides through successive unit cells, it will not2 at whichkgT becomes comparable to the productagb)
generally coincide with the minimum at the center of the unitand the lowest barrier, which is our criterion for a molecule
cell, but rather it will pass by it at a distance of closestoccupying this well hopping over the lowest barrier and
approach,b. Then, in successive unit cellAr=b+As, dropping into a lower minimum. On the basis of Langevin
whereb is a vector of magnitude equal to the distance ofequation calculations as those presented in Sec. Ill, we
closest approach and direction normal to the path followedind that for v~1 cm/s, a~0.1. The missing points on
by the surface 1 minimum andis is the displacement along these curves represent places at whigl is greater than
the path followed by the surface 2 minimum under consid-a(v)(AE+ AE,), and hence the molecule moves back and
eration from the point of closest approach to the instabilityforth between the higher and lower well. Hence, the picture
curve. of the molecule dropping from a metastable to a stable mini-
In order to treat the qualitative effects of nonzero tem-mum, resulting in energy dissipation, breaks down. The en-
perature, we use the following arguments. Even before a welrgy drop when a particle drops to a lower stable minimum
becomes unstable, the molecule can hop over the lowesls a function of the angle thatr makes with the horizontal
boundary of the well in which it resides and drop into aaxis of Fig. Za) is plotted in Fig. 2b). From this curve, we
lower well at nonzero temperature. This will occur if the ratefind the average energy drop, denoted h). This average
of hopping over the boundayE,,, which is given to a good is obtained by considering a series of closely spaced paths
approximation byw,e 2Fo’keT (where w, is the frequency for a minimum of surface 2 through a unit cell of surface 1
of the order of the vibrational frequency for the molecule inparallel to the direction of sliding, and hence for each curve
the higher wel, is large compared to/a, the inverse time the origin passes through this unit cell at a different distance
for the surfaces to slide a distance of the order of a latticef closest approach. Because of the incommensurate nature
constanta relative to each other, whete s the sliding ve-  of the interface, this procedure is equivalent to starting with
locity. Otherwise the barrier may get higher before the molthe minimum of surface 2 under consideration coinciding
ecule gets a chance to hop over it. In practice, we use with the minimum in the center of the unit cell of surface 1
simplified criterion for thermal activation of a molecule over which is under consideration. We then follow the path taken
the barrierAE,, namely, that activation will definitely occur by the minimum of surface 2, which is under consideration,
whenevekgT is greater than a certain fractiar(v) of AE,  through successive unit cells. Unlike the first cell, in succes-
and will definitely not occur if it is less than this energy. sive cells the minima from surface 1 and surface 2 never
How good this crude criterion is for estimating the tempera-coincide. Still, when the minimum from surface 2 crosses the
ture dependence of the friction will be checked using calcuinstability or effective instability curve, a molecule in the

05

energy drop

FIG. 2. (a) The instability curve for surfaces of equal strength
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potential well under consideration will drop to a deeper well.cn? of contact area of 1.3610% dyn/cn?, which corre-
We know that this must be true because it cannot make anyponds to the minimum pressutat lightest loadsin the
difference whether the minimum from surface 2 begins itsgreenwood-Williamson moddl7] for values of the param-
travel from the origin of the unit cell of surface 1 and then gters used in Ref2]. This is a standard model for explaining
crosses the instability curve or it does not begin from thee fact that friction is proportional to the normal force for
origin, as actually happens in this case. elastic asperity contact. To determikg, we set this pres-

. In order to caIcuIateéAE}, 'and fro'm I 'the mean force.c.)f sure equal to the product of the number density of adsorbed
f”Ct'On. per mc_)lecule, we divide the mten_or Of the mst_aplllty molecules per unit area and the component of force on a
;tl]:jvg mé(r) Ztr::jﬁiucl);rvgi(lttr:n%e?rlgrmgtrggenﬂIr:?rgﬂ(r)r? oc;fsi;?;r(]:g single molecule normal to the interface, calculated from the

berp Steele potentig]6] in order to determine the distance of the

1 at the center of its unit cell, where is the distance of Wolecule from either of the two surfacédenoted byz in
closest approach defined earlier, oriented along the directio s . .
PP g Ref. [6]). This value ofz is then used to determine the pa-

of sliding. The place of intersection of this strip with the side ) ) i
of the instability curve in the sliding direction of surface 2 "@meterVo used in our calculations. The number density of

determines\E as a function ob, which now must be aver- adsorbed molecules, assuming that 10% of the possible in-
aged ove. In reality each point inside the instability curve terstitial positions on a sgrface. contain adsorbed molecules is
in the unit cell that we are considering defines an interfacé-11x 10" cm™2. Following this procedure, we obtaivig
minimum residing in one of the unit cells of surface 1 on the=0.0232 eV. Then, we obtain a force of friction per mol-
interface, but it is convenient to translate them all into oneecule at the interface of the order fat=22.5° and ¢
unit cell of surface 1 for the purpose of determining the=7.5° of 16.0<10 ' dyn for kgT/V,=0.0 and 0.05, 13.4
average energy loss, and from it the mean force of frictionx 10”7 dyn for kgT/V,=0.2, and 9.4& 10 ' dyn for
(The minimum will not, however, actually be located at thekgT/V,=0.4. The values of the friction for other valuesf
position of the surface 2 minimum under considerajion. and ¢ that we considered were of similar magnitude. Using
Now let us slide the surface 2 lys along the sliding direc- the above value for the density of adsorbed molecules, we
tion that we have chosen. The points in any one of the stripgbtain for the force of friction per unit area of contact 17.8
of width Ab that were within a distanc&s of the instability ~ x 10" dyn/cnf  for kgT/V,=0.0 and 0.05, 14.8
curve before sliding, will pass through it, leading to an en-x 107 dyn/cn? for kgT/V,=0.2, and 10.% 10’ dyn/cn? for
ergy lossAE(b) for each such point. Each of these stripskgT/V,=0.4. The ratio of this quantity with the above value
will have an equal number of points passing through theof the normal force per unit contact area is the friction coef-
instability curve. Let us assume that there is a mean concefficient. The value that we obtain is consistent with the value
tration ofc particles per unit area on the interface. Each suclobtained by Musef8].
molecule must lie in an interface potential minimum. Since  Let us now discuss the velocity dependence of the kinetic
there is a one-to-one correspondence between locations fifction on the basis of this model. Earlier in this section, we
interface potential minima and locations of a surface 2 mini-argued that ifwoe_(AE+AEb)/kBT>U/a, a molecule that hops
mum within the instability curve, as discussed above, theyver a barrier of heighAE, in order to get out of an inter-
number per unit area within the instability curve of suchface potential well and drop into another well, whose mini-
points, which correspond to minima containing a moleculemum energy lies an energyE below the original well mini-
is given byn=cA/A;, whereA is the unit cell andA; is the  mum, will just as easily hop back into its original well,
instability curve area. Then, the total energy loss for slidingimplying the higher well will no longer contribute to the
by As is given by kinetic friction. It follows that if wge ™ Vmax'keT>y/a, where
VmaxiS @n energy such that if the molecule’s energy is above
nASJ dbAE(b), (5) this va_llue, it will be able to get o_ut of all of the interface
b potential wells and move over the interface through all of the
potential wells. This clearly implies that when the above in-
integrated over all strips that pass through the side of thequality is satisfied, the picture of molecules dropping from
instability curve in the direction of sliding. The mean force metastable equilibria into lower potentials will break down
of friction per molecule is given by the expression in B).  because none of the wells will be metastable. The above
divided byAs and by the number of molecules per unit cell, condition for the friction being small can also be written as
given bycA. Then the mean force of friction per molecule is x=V,,,,/[KgT In(wpa/v)]<1, and in the limitx>1 the fric-
given by tion will be large. Since we know that in the zero tempera-
ture limit we get dry friction, i.e., the friction approaches a
a1l constant independent of the velocity, it is reasonable to as-
Fric=A fbdbAE(b)' © sume that the force of friction is given biy=F(x), where
F(x) is an analytic function which approaches zeroxasp-
For equal values o, for the two surfaces, fop=7.5° and  proaches zero and approaches a constant as x approaches
0=22.5, using Eq.(5), we obtainF¢;.=1.294/y/a for  infinity. The above scaling theory implies that as ap-
kgT/Vo=0.0 and 0.05F,;.=1.07A//a for kgT/Vy=0.2,  proaches zero, the friction will be proportionalb, where
andF;.=0.76V,/a for kgT/Vy=0.4. Let us find the fric- nis an integer. There have been several theoretical studies of
tional force per crh of contact area for a normal load per the Tomlinson model applied to the problem of an atomic
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FIG. 5. Thex coordinate(a) and they coordinate(b) of the

FIG. 3. Thex coordinate(a) and they coordinate(b) of the molecule are plotted as functions of time fqgT/Vy=2.

molecule are plotted as functions of time T/V,=0.3.

force microscopgAFM) tip sliding over a periodic substrate initially placed ir_1 a potential we_II which is (_:Ios_e to be_coming
potential at nonzero temperatyi@]. These studies give ei- unstable, meaning that one of its boundaries is _relatlvely low.
ther a Ing) or [In(v)]?® dependence of the friction on the In these calculatlons., the surfaces_ are not s]|d|ng. We ;olve
sliding velocityv of the AFM tip, which seems to agree with the standard_ Langevin equation with a damplng propomon_al
experimen{10]. These models differ from the model that we © the velocity of the molecule. The damping constant is
are studying in the sense that in these studies the instabiIitié’s.qU"JZ‘I to 13 of (our time unif)". This time unit is equal to
that give rise to the friction are macroscopic level instabili-(M&7Vo) ™, wherem is the mass of the molecule. We
ties due to the AFM itself. In contrast, our model ascribes théPresent results for the& and y coordinates in Fig. 3 for
friction to microscopic level instabilities of the mobile mol- KeT/Vo=0.3 and in Fig. 4, the potential energy of the mol-
ecules assumed to be at the interface. Therefore, there is #§ule as a function of time. . o
reason to expect that both mechanisms should give the same N Fig. 5 we show thecandy coordinates, and in Fig. 6
velocity dependence. Nevertheless, while our velocity dewe show the potential energy of the molecule as a function
pendence is not the lnf dependence found in these studiesOf time for kgT/Vo=2.0.

[9,10], its shape does not look qualitatively different from a Ve observe that fokgT/Vo=0.3, the molecule drops out
In(v) velocity dependence. of its original well to a deeper We_II and th_en essentlall_y does
Our choice for the scaling parameteis not unique since, Not move very far from the location of this new well in the
for example, we could alternatively have chosen time of the simulation, which is the time necessary for a

= (v/wya)e'max’eT. This choice would give proportional surface sliding at about 1 cm/s to slide about @.1Similar

to v", but for kg T<Vnay, f will still rise very rapidly to its ~ Pehavior was found fokgT/V, as high as 0.7. For just
zero temperature value. This feature of the velocity depenslightly higherT, the molecule wanders out of its present
dence is independent of how we choose well into other wells at the interface, which supports the
“step function” approximation for the temperature depen-
dence used in Sec. Il. FégT/Vy=2.0, we can see that the
molecule wanders over many lattice constants throughout the
interface, presumably passing through a wide range of poten-

In order to test the validity of our approximate method of tial energies. Here it is clearly reasonable to assume that the
treating the effects of temperature, we will now give somemolecule can be considered to be in thermodynamic equilib-
results of calculations that we have done based on the Langeium at all times. At such a high temperature, molecules will
vin equation, which should give an accurate treatment of the

IIl. LANGEVIN EQUATION CALCULATIONS TO TEST
OUR TREATMENT OF TEMPERATURE

effects of temperature. In these calculations, the molecule is 4
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FIG. 4. The potential energy is plotted as a function of time for  FIG. 6. The potential energy is plotted as a function of time for
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never find themselves in metastable equilibrium positions11% of the component along the sliding. Since real crystal
which are needed for the mechanism for “dry frictional dis- surfaces have grains oriented with random axis directions,
sipation” discussed in this paper to occur. Hence, for suctwe expect it to average out. Hence we will not consider it.
temperatures there will be no dry friction. Only viscous fric- We have calculated the force on the molecule due to one of
tion will be possible. the surfaces for the molecule located at an interface potential
minimum (which is due to the potentials due to both of the
surfacegas a function of sliding distance, beginning with the
IV. CONCLUSION AND SPECULATIONS situation in which the two wells exactly coincide. This force
ABOUT STATIC FRICTION clearly reaches its maximum possible value just before the

We have extended an adiabatic approximation methodnterfac_e well minimum occupied by the molecgle disap—.
pears, i.e. when the well becomes unstable, since that is

which we had previously used to calculate kinetic friction in
when the wells from the two surfaces are farthest from co-

the low velocity limit at zero temperature for the Muser- .

Robbins model, to nonzero temperature. We have obtainelf¢iding. The force that must be exerted in order to slide the

values of the kinetic friction for reasonable values of thesurfaces relative to each other is the vector sum of the force
parameters in the model. Our method, which focuses OI;?xerted by each molecule on one of the surfaces. The maxi-

Tomlinson model-like instabilities that are expected to domi—][num ;’hal?e IS Eh; max'lmgm forge ?f stat:(c f[|hct|ct)n, |.e.,fthe
nate the frictional dissipation in the slow sliding limit, allows orce that must beé applied in order to maxe the two surtaces

us to gain insight into how this physical mechanism is able tofSI_'dt‘_e relatlved to ga((j:h otlher.l T_hef maélrtnuk;n f%rcgyof static
account for kinetic friction. riction per adsorbed molecule is found to be about 4,

Let us now make some speculations based on the mod hich is much larger than the largest value of the average

Co : . : f kinetic friction found in the preceding sectiére.,
studied in this work about a possible physical reason fo orce o ) .
static friction being larger than kinetic friction in general. +-2%o/a). In practice, forkgT much less than the height of

The largest possible value of the force of static friction forthe. highest barrier, m.olecules W.'” not be able to thermally
this model will occur if the molecules have enough time toactivate over the barriers bounding the deeper wells. Under

diffuse to the deepest possible potential minima that can OCs_uch circumstances, the static friction will be much closer to
cur at the interface. These will occur whenever a potentia?he_l_lr(]'ne_t('jC frlc:]lon.h ic fricti | h
minima from each surface exactly coincide. Because of the e idea t at_t e static _r|ct|on ge_ts_ arger_as_t e wo
quasiperiodic nature of the interface, which occurs when théurfaces are stationary and in contact is in qualitative agree-

surfaces are rotated at arbitrary angles with respect to ea ent with what is ob;erved for macroscopic surfafels .
other, there can be at most one point on the interface 6ﬁthough we are certainly not claiming that the present sim-

which two minima can exactly coincide, but there will be plified model is able to account for all the complications of

many locations at which minima from the two surfaces can?enerfl magt;?scopu;]mt_erfac?s. It mﬁy,hhowever, be sugges-
come arbitrarily close to coinciding. Ive O possible mechanisms for such phenomena.

Let us now attempt to slide the surfaces relative to each It IS clear that when the temperature Is nonzero, the mol-
other. Since the two wells will no longer coincide, the Ioca—eCUIef is able to get out of its well sooner, befqre the fprce
tion of the interface potential minimum will no longer be at that it exerts on one of the surfaces reaches its maximum

the location of the minimum of each of the two potential value. This implies that the maximum force of static friction
wells. Thus the two wells will exert equal and oppositeShOUId decrease as the temperature increases. This point was

forces on the molecule. This force for each molecule will bealISO made by Aichele and Musf8].

along the line joining the minima of the two wells, which is
not necessarily along the sliding direction. The component of
the force of static friction along the sliding direction is just
—dVIdsy, wheresy is the sliding distance. The component  J.B.S. wishes to thank the Department of EnefGyant
perpendicular to the sliding direction was found to be at mosiNo. DE-FG02-96ER45585
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