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Friction in the zero sliding velocity limit
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~Received 3 July 2003; published 30 December 2003!

Using an adiabatic approximation method, which searches for Tomlinson model-like instabilities for a
simple but still realistic model for two crystalline surfaces, with mobile molecules present at the interface,
sliding relative to each other, we are able to account for the virtually universal occurrence of ‘‘dry friction’’ at
zero temperature. A modified version of this method allows us to calculate the kinetic friction at nonzero
temperature as well. We have also considered the static friction, and have demonstrated that the model is able
to account for static friction being larger than kinetic friction.
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I. INTRODUCTION

Muser and co-workers have argued that clean surfa
should not exhibit static friction@1# at the point of contact of
an asperity from each surface, but the presence of mo
molecules~so called ‘‘third bodies’’! at the interface can lea
to static friction. This is a surprising result because one u
ally expects such lubricant molecules to reduce rather t
enhance friction. On the other hand, if the mobile molecu
are much more strongly attached to one surface than
other, they will act as randomly distributed pinning sites b
longing to the surface to which they are strongly attach
and it was argued in Ref.@2# that molecular level random
defects on the surface will not lead to static friction. Thus,
important ingredient in these molecules leading to static f
tion is the relative strength of the interactions of the lubric
molecules with the two surfaces. In the present work,
concentrate mainly on the study of ‘‘dry friction’’~i.e., ki-
netic friction in the slow sliding speed limit!. If a dilute
concentration of molecules is initially randomly distribute
over the interface, they will in time diffuse to the deepe
potential wells. These occur at the locations on the interf
at which potential minima from the two surfaces nearly c
incide, as the potential at the interface will be minimu
there. As the surfaces slide relative to each other the min
from the two surfaces producing the potential minimum o
cupied by this molecule will no longer coincide, and at so
point during the sliding, the minimum often becomes u
stable~i.e., ceases to be a minimum!, allowing the molecule
to drop into a deeper minimum. This is considered as
source of energy dissipation due to kinetic friction in t
slow sliding speed limit. It was argued by Caroli and c
workers, based on an earlier suggestion by Brillouin and
Tomlinson@3# that without multistability there is no static o
dry friction. The existence of dry friction due to Tomlinson
like potential instabilities has been studied in both one a
two dimensions using molecular dynamics@4#. We have pre-
sented a way to study dry friction for the model of Ref.@1#
~see Ref.@5#!. Our method treats the problem in the slo
sliding velocity ~i.e., the adiabatic! limit quite naturally. It
also makes it possible to study the important question of
relationship between static and dynamic friction.

In Ref. @5#, we initially studied the case of a dilute con
1063-651X/2003/68~6!/066118~8!/$20.00 68 0661
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centration of single globular molecules adsorbed at an in
face between two triangular lattice surfaces rotated at an
bitrary angle such that the interface is incommensura
While the triangular lattice surfaces considered in Ref.@5#
might be more realistic, the square lattice surface mode
much simpler, allowing us to get more insight into this pro
lem without having to deal with the additional complicatio
of the triangular lattice model. Therefore, in this work, w
will initially consider surfaces that are square lattices. In
ality, the interasperity interface that we are trying to mode
more likely to be disordered than periodic or quasiperiod
and hence, both of these periodic surface models repre
only a first step towards a truly realistic treatment of th
problem.

The model we have have studied consists of two ri
surfaces with a dilute concentration of particles trapped
tween them. To zeroth order, we neglect the particle-part
interactions. The surfaces are represented by two iden
two-dimensional periodic potentials, which are rotated re
tive to each other at an arbitrary angle, as this is the us
situation at an interface. We model the potential functi
acting on a mobile molecule due to each surface by
Steele potential@6#. To a good first approximation, the po
tential may be represented by the lowest-order term in
Fourier series for it.

In Ref. @5#, the problem was studied at zero temperatu
In the present paper, the method is discussed in more d
and is extended to nonzero temperature. At zero tempera
frictional dissipation comes about because as the surfa
slide relative to each other, the interface potential well mi
mum in which each mobile molecule resides eventually
comes unstable, allowing the molecule to drop to a low
energy well.~In this paper, the term interface potential we
refers to the potentialv11v2, due to the two surfaces.! The
kinetic energy so generated is assumed to get quickly d
pated. At nonzero but low temperatures the molecule
drop to a lower well before the well that it presently occup
becomes unstable by hopping over the potential barrier s
rating it from the deeper well. At very high temperatures,
contrast, it can get just as easily thermally excited back
into the higher well, making the higher interface potent
well under consideration no longer contribute because it
©2003 The American Physical Society18-1
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DALY, ZHANG, AND SOKOLOFF PHYSICAL REVIEW E68, 066118 ~2003!
longer represents a metastable state of the molecule u
consideration.

II. THE SEARCH FOR INSTABILITIES

We model the potential function acting on a mobile m
ecule due to each surface by the Steele potential@5#. To a
good first approximation, the potential may be represen
by the lowest-order term in the Fourier series for it. For o
surface~surface 1!, it is given by

v1~x,y!5V0(
G

eiG•r

52V0$cos@~2p/a!x#1cos@~2p/a!y#%, ~1!

where the vectorsG denote the smallest reciprocal lattic
vectors of a square lattice of lattice constanta andV0 is the
strength of the potential. As mentioned in the Introductio
we will initially discuss results for the square lattice, in ord
to clarify the physics of the problem because the physics
the square lattice model is easier to understand. For all p
tive loads,V0 is positive. This is easily seen to be corre
because the maxima of the expression in curly bracket
Eq. ~1! occur at the positions of the atoms making up surfa
1. Clearly, the adsorbed molecules would be expected to
in the interstitial positions~where the quantity in curly brack
ets is minimum!. This is easily verified by explicit calcula
tion using the Steele potential@5#, which is a reasonable
approximation for the potential of interaction between
adsorbed molecule and a crystalline surface. We chose
the potential of the second surface~surface 2! the potential
given in Eq. ~1! rotated byf and translated by (Dx,Dy).
Then this potential is given byv2~x,y!5v1~x8,y8!, wherex8
5(x1Dx)cos(f)1(y1Dy)sin(f) and y852(x1Dx)sin(f)
1(y1Dy)cos(f), where,f is the rotation angle, and the dis
placement parametersDx and Dy are given by Dx
5s0cos(u)1bsin(u) and Dy5s0sin(u)2bcos(u). Here, s0
5vt, wherev is the velocity of sliding of surface 2 relativ
to surface 1 along a direction making an angleu with the x
axis. The maximum at the origin of surface 2 is movi
along a path displaced a distanceb, the distance of closes
approach, normal to the path passing through the minim
at the origin of surface 1.

Since we are neglecting intermolecular interaction,
study a single molecule placed at random within the Wign
Seitz unit cell of surface 1 at a time. We assume that e
molecule will move to the nearest minimum ofv11v2. The
resulting potential minimum reaches its lowest value wh
the two surfaces have slid until a minimum ofv1 and a
minimum of v2 are at their distance of closest approac
Therefore, the resulting potential minimum can only beco
unstable and disappear after this point, since before it
minimum is getting deeper. Thus we need only begin
search for instabilities for wells that are at their distance
closest approach. Because this potential is a function of ti
the existence of these minima is time dependent. As a m
mum containing a particle disappears, the particle will dr
to another potential minimum of lower energy, resulting in
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gain of kinetic energy, which is assumed to get quickly tra
ferred to phonons and electronic excitations of the surfac
As the surfaces continue to slide relative to each other,
depth of the new minimum occupied by the molecule d
creases and the potential eventually becomes unstable so
the process described above repeats itself. This is our me
nism for frictional energy dissipation. We will refer to th
fact that each potential well is able to become unstable as
surfaces slide relative to each other as instability renewa
it does not occur for a particular model for the surface p
tentials, there will be no dissipation for long time slidin
because the molecules will get sorted into potential we
which never become unstable as the surfaces slide. We
done extensive studies of this problem for the surface po
tial in Eq. ~1! using this method, but it is equally applicab
to any two periodic or disordered potentials, representing
two surfaces.

Before discussing the numerical procedure for calculat
the frictional energy loss and from it the force of kinet
friction, let us first present some plots of the potential whi
illustrate how this process occurs and why we feel that i
reasonable to expect it to occur for general surfaces in c
tact. They are presented in Fig. 1. It is easy to see from
1~a!, as a consequence of the rotation of the surfaces rela
to each other, that the interface consists of Moire´ patterns
with domains in which the interface potential is relative
deep separated by domain wall boundaries, in which the
potential is relatively shallow because on these bounda
the potentials from the two surfaces tend to cancel e
other. When instabilities occur, they do so on these dom
boundaries. Such an instability is illustrated in Fig. 1~b!.

By studying the evolution of the interface potential we
as the surfaces slide relative to each other, we can look a
issue of instability renewal raised earlier in this section. W
find that as the surfaces slide relative to each other, pote
wells within a domain boundary become unstable, allow
any molecule that might occupy such a well to drop to
deeper well. Eventually, the domain boundary moves aw
from the the well that the molecule presently occupies, a
the well becomes located closer and closer to the center
domain. As it does so, it becomes deeper~i.e., more stable!,

FIG. 1. ~Color online! ~a! A contour plot of the interface poten
tial for square lattice surfaces for a typical displacement of
surfaces for surfaces of equal strength, forf57.5° andu522.6°.
The x andy axes are in units of a lattice constant.~b! The contour
plot of ~a! plotted over a smaller range ofx andy. Unstable wells
are seen in the row of relatively shallow wells in the middle of t
figure.
8-2
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FRICTION IN THE ZERO SLIDING VELOCITY LIMIT PHYSICAL REVIEW E 68, 066118 ~2003!
as this is the characteristic of wells in the center of a dom
Eventually, however, another domain wall will move towar
the vicinity of this well. As this occurs, the well become
shallower. When this well is located inside a domain wall
too becomes unstable, allowing the process to repeat.

In this work, the unit cell for each surface is chosen to
a Wigner-Seitz unit cell with a potential minimum located
its center. We begin our search with a potential minimum
the top surface at the same location in thex-y plane as a
minimum in the bottom surface. We now slide the two s
faces relative to each other by the vector withx andy com-
ponentsDx andDy defined below Eq.~1! and determine if
any of the minima have become unstable. As noted ear
such instabilities are responsible for dry friction.

In order to locate minima, and to track their positions a
stability as our surfaces slide past one another, we first p
a particle at a random position at the interface and us
Monte Carlo routine to move it to the nearest potential mi
mum. In order to predict where a minimum will move durin
sliding, we use the fact that the force on a particle at
potential minimum„x0(t),y0(t)… remains identically zero for
all time in the adiabatic approximation to find velocity
which the minimum is moving. Details of this procedure c
be found in Ref.@5#.

The main part of our procedure is an iterative meth
based on the Taylor series expansion of the potential wh
allows us to search for minima and evaluate whether a
ticular minimum is unstable. The second-order Taylor se
expansion of the potential, assumed to be with respect to
location of the nearest minimum,

v~x,y!5v~x0 ,y0!1
]v
]x U

0

dx1
]v
]y U

0

dy

1~1/2!
]2v
]x2U

0

dx21~1/2!
]2v
]y2 U

0

dy21
]2v

]x]yU
0

dxdy,

~2!

is now used to determine more accurately the location of
new minimum. The first-order derivatives vanish, since
assume that we are expanding about the true minimum.
second-order derivatives can, to second-order, be replace
the second-order derivatives at the present position of
particle, provided we are close to the actual minimum. T
quantitiesdx5(xpp2x0) and dy5(ypp2y0) are then the
approximate distances, along thex andy directions, between
the particle’s present position, and where the actual m
mum is. In order to use the force components felt by
particle at its present location to finddx anddy, we differ-
entiate the above second-order approximation with respe
both x andy, obtaining an approximation for the force com
ponents near the true minimum,

]6v
]x

5
]2v
]x2U

pp

dx1
]2v

]x]yU
pp

dy, ~3a!
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]v
]y

5
]2v
]y2U

pp

dy
]2v

]x]yU
pp

dx. ~3b!

Equations~3a! and ~3b! are solved fordx anddy to give

dx5
1

D F ]2v
]y2Upp

]v
]xU

pp

2
]2v

]x]yUpp

]v
]yU

pp
G , ~4a!

dy5
1

D F ]2v
]x2U

pp

]v
]xU

pp

2
]2v

]x]y U
pp

]v
]xU

pp
G , ~4b!

where D, known as the Gaussian curvature~for extremum
points!, is evaluated at the point (xpp ,ypp). The derivatives
in Eq. ~4! are found from the potentialv11v2 defined in Eq.
~1! and in the discussion under it. If the particle is close
the minimum, this procedure converges very quickly to t
true minimum. How quickly it converges, however, is depe
dent on the size of the quantityD.

The second derivatives of the potential form a tw
dimensional second-rank tensor, which is diagonal for app
priate orientation of the coordinate axes~i.e., the principal
axes!; D is equal to the product of these diagonal elemen
The xx component defines a parabola along thex direction,
and theyy component defines another along they direction.
If both components are positive, one has a minimum; if b
are negative, one has a maximum, and if one is positive
one is negative, then one has a saddle point. When one o
eigenvalues, and henceD, becomes zero, we can have a
instability if the third-order terms in the Taylor series expa
sion of the potential around the critical point under cons
eration are nonzero. If the third-order terms are zero, we
have a fourth-order minimum or maximum if the fourth o
der terms are nonzero.

Our method allows us to track the position of a minimu
until it becomes unstable, at which point we can locate
new minimum into which an unseated particle will next fa
This allows us to calculate the drop in potential energy t
such a particle would undergo. The total frictional ener
loss between our two surfaces is the sum of these en
drops over all of the particles. The quasiperiodic nature
the interface allows us to consider all possible interface
tential minima, which are possible positions of molecules
the surface, and all possible sliding distances of the two
faces relative to each other simply by studying the behav
of the potential minima in a single unit cell of surface 1 as
single minimum from surface 2, which initially coincide
with the minimum at the origin of the unit cell of surface
which is under consideration, slides in all possible directio
The vectorDr5(Dx,Dy), the translation of the centers o
the two unit cells under consideration relative to each ot
at which unstable minima occur at some point in the unit c
falls on the curve, which surrounds the point of initial coi
cidence of the centers of the two cells. We will refer to th
as the instability curve, which is shown in Fig. 2~a!. The
overlap of these minima from surface 1 and surface 2 gi
rise to an interface potential minimum for all positions of t
minimum from surface 2 under consideration within the
terior of the instability curve. Outside of this curve, there c
be no interface minimum resulting from these two surfa
minima ~but there can still be one resulting from a differe
pair of minima!. Since the instability curve surrounds th
8-3
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DALY, ZHANG, AND SOKOLOFF PHYSICAL REVIEW E68, 066118 ~2003!
origin, there will be friction for almost all directions of slid
ing ~i.e., values ofu). During the sliding, as the minimum
from surface 2 slides through successive unit cells, it will n
generally coincide with the minimum at the center of the u
cell, but rather it will pass by it at a distance of close
approach,b. Then, in successive unit cellsDr5b1Ds,
where b is a vector of magnitude equal to the distance
closest approach and direction normal to the path follow
by the surface 1 minimum andDs is the displacement alon
the path followed by the surface 2 minimum under cons
eration from the point of closest approach to the instabi
curve.

In order to treat the qualitative effects of nonzero te
perature, we use the following arguments. Even before a
becomes unstable, the molecule can hop over the low
boundary of the well in which it resides and drop into
lower well at nonzero temperature. This will occur if the ra
of hopping over the boundaryDEb , which is given to a good
approximation byv0e2DEb /kBT ~wherev0 is the frequency
of the order of the vibrational frequency for the molecule
the higher well!, is large compared tov/a, the inverse time
for the surfaces to slide a distance of the order of a lat
constanta relative to each other, wherev is the sliding ve-
locity. Otherwise the barrier may get higher before the m
ecule gets a chance to hop over it. In practice, we us
simplified criterion for thermal activation of a molecule ov
the barrierDEb , namely, that activation will definitely occu
wheneverkBT is greater than a certain fractiona(v) of DEb
and will definitely not occur if it is less than this energ
How good this crude criterion is for estimating the tempe
ture dependence of the friction will be checked using cal

FIG. 2. ~a! The instability curve for surfaces of equal streng
for f57.5° is the outermost curve; the one inside of it is the eff
tive instability curve forkBT/V050.05; the one inside this curve i
for kBT/V050.2; and the innermost curve is forkBT/V050.4 Units
of x andy axes are fractions of a primitive lattice vector. The mis
ing parts of theTÞ0 instability curves represent values ofu for
which the energy drop is so small that the molecule hops back to
higher potential well almost as rapidly as it drops to the lower o
These curves have been rotated byf/2 in order to make them
appear symmetrical. This is equivalent to rotating the top surfac
f/2 and the bottom one by2f/2, rather than rotating only the to
surface byf. ~b! The energy drop occurring in an instability i
units of 2V0 vs the angle~in degrees! u betweenDr and the hori-
zontal axis of a. The tallest curve is forT50; the curve for for
kBT/V050.05 falls essentially on top of that forT50; the next
tallest is for kBT/V050.2; and the lowest curve is forkBT/V0

50.4.
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lations based on the Langevin equation in Sec. III.DEb is the
lowest potential barrier surrounding the potential well th
we are considering. In order to findDEb , we diagonalize the
matrix of the second derivatives of the potential evaluated
the potential minimum, as described above. This allows u
determine the principal axes of the potential. The princi
axis corresponding to the lowest eigenvalue of this matrix
likely to be close to the direction in which the barrier
lowest. We then do a search for a saddle point of the po
tial, focusing our search in this direction. The saddle po
that we find is the minimum energy barrierDEb , which must
be overcome in order for a molecule located in the poten
well to get out of the well and then fall into a potential we
of lower energy. We found, however, that this does not s
nificantly affect the energy dissipation because even if th
were no hopping over the barrier, the well would still at
later time become unstable. As a result, the resulting ene
dissipation tends to be comparable to that at zero temp
ture. As the temperature becomes comparable toa(v)(DE
1DEb), where DE is the energy difference between th
higher and lower potential well minima, the molecule
quite likely to hop back into the higher potential well short
after it has dropped to the lower one. This will occur as lo
as the rate of hopping back to the higher well, which is of t
order ofv0e2(DE1DEb)/kBT ~herev0 is the frequency of the
order of the vibrational frequency for the molecule in t
lower well!, is large compared tov/a. This criterion deter-
minesa(v). In Fig. 2~a!, we plot the instability curve for
T50. ForT.0, we plot an effective instability curve. Thi
is a curve made up of positions of the minimum from surfa
2 at whichkBT becomes comparable to the product ofa(v)
and the lowest barrier, which is our criterion for a molecu
occupying this well hopping over the lowest barrier a
dropping into a lower minimum. On the basis of Langev
equation calculations as those presented in Sec. III,
find that for v'1 cm/s, a'0.1. The missing points on
these curves represent places at whichkBT is greater than
a(v)(DE1DEb), and hence the molecule moves back a
forth between the higher and lower well. Hence, the pict
of the molecule dropping from a metastable to a stable m
mum, resulting in energy dissipation, breaks down. The
ergy drop when a particle drops to a lower stable minim
as a function of the angle thatDr makes with the horizonta
axis of Fig. 2~a! is plotted in Fig. 2~b!. From this curve, we
find the average energy drop, denoted by^DE&. This average
is obtained by considering a series of closely spaced p
for a minimum of surface 2 through a unit cell of surface
parallel to the direction of sliding, and hence for each cu
the origin passes through this unit cell at a different dista
of closest approachb. Because of the incommensurate natu
of the interface, this procedure is equivalent to starting w
the minimum of surface 2 under consideration coincidi
with the minimum in the center of the unit cell of surface
which is under consideration. We then follow the path tak
by the minimum of surface 2, which is under consideratio
through successive unit cells. Unlike the first cell, in succ
sive cells the minima from surface 1 and surface 2 ne
coincide. Still, when the minimum from surface 2 crosses
instability or effective instability curve, a molecule in th

-

-

he
.

y

8-4



ll
a
it

en
th

f
ty

ti
de
2

-
e
ac
he
n
he
on
he
n.

rip

n
ps
th
ce
c

ce
s

in
th
ch
le

in

th
e

ll,
is

r

g
or

bed
n a
the
e

a-
of
in-

s is

l-

ng
we
.8

e
ef-
lue

etic
e

ni-

l,
e

ve
e
the
in-
m
n

ove
as

ra-
a
as-

aches

s of
ic

FRICTION IN THE ZERO SLIDING VELOCITY LIMIT PHYSICAL REVIEW E 68, 066118 ~2003!
potential well under consideration will drop to a deeper we
We know that this must be true because it cannot make
difference whether the minimum from surface 2 begins
travel from the origin of the unit cell of surface 1 and th
crosses the instability curve or it does not begin from
origin, as actually happens in this case.

In order to calculatêDE&, and from it the mean force o
friction per molecule, we divide the interior of the instabili
curve into strips of widthdb along the direction of sliding
and a perpendicular distanceb from the minimum of surface
1 at the center of its unit cell, whereb is the distance of
closest approach defined earlier, oriented along the direc
of sliding. The place of intersection of this strip with the si
of the instability curve in the sliding direction of surface
determinesDE as a function ofb, which now must be aver
aged overb. In reality each point inside the instability curv
in the unit cell that we are considering defines an interf
minimum residing in one of the unit cells of surface 1 on t
interface, but it is convenient to translate them all into o
unit cell of surface 1 for the purpose of determining t
average energy loss, and from it the mean force of fricti
~The minimum will not, however, actually be located at t
position of the surface 2 minimum under consideratio!
Now let us slide the surface 2 byDs along the sliding direc-
tion that we have chosen. The points in any one of the st
of width Db that were within a distanceDs of the instability
curve before sliding, will pass through it, leading to an e
ergy lossDE(b) for each such point. Each of these stri
will have an equal number of points passing through
instability curve. Let us assume that there is a mean con
tration ofc particles per unit area on the interface. Each su
molecule must lie in an interface potential minimum. Sin
there is a one-to-one correspondence between location
interface potential minima and locations of a surface 2 m
mum within the instability curve, as discussed above,
number per unit area within the instability curve of su
points, which correspond to minima containing a molecu
is given byn5cA/Ai , whereA is the unit cell andAi is the
instability curve area. Then, the total energy loss for slid
by Ds is given by

nDsE
b
dbDE~b!, ~5!

integrated over all strips that pass through the side of
instability curve in the direction of sliding. The mean forc
of friction per molecule is given by the expression in Eq.~4!
divided byDs and by the number of molecules per unit ce
given bycA. Then the mean force of friction per molecule
given by

F f ric5Ai
21E

b
dbDE~b!. ~6!

For equal values ofV0 for the two surfaces, forf57.5° and
u522.5, using Eq.~5!, we obtain F f ric51.294V0 /a for
kBT/V050.0 and 0.05,F f ric51.077V0 /a for kBT/V050.2,
andF f ric50.76V0 /a for kBT/V050.4. Let us find the fric-
tional force per cm2 of contact area for a normal load pe
06611
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cm2 of contact area of 1.3631010 dyn/cm2, which corre-
sponds to the minimum pressure~at lightest loads! in the
Greenwood-Williamson model@7# for values of the param-
eters used in Ref.@2#. This is a standard model for explainin
the fact that friction is proportional to the normal force f
elastic asperity contact. To determineV0, we set this pres-
sure equal to the product of the number density of adsor
molecules per unit area and the component of force o
single molecule normal to the interface, calculated from
Steele potential@6# in order to determine the distance of th
molecule from either of the two surfaces~denoted byz in
Ref. @6#!. This value ofz is then used to determine the p
rameterV0 used in our calculations. The number density
adsorbed molecules, assuming that 10% of the possible
terstitial positions on a surface contain adsorbed molecule
1.1131014 cm22. Following this procedure, we obtainV0

50.0232 eV. Then, we obtain a force of friction per mo
ecule at the interface of the order foru522.5° and f
57.5° of 16.031027 dyn for kBT/V050.0 and 0.05, 13.4
31027 dyn for kBT/V050.2, and 9.4031027 dyn for
kBT/V050.4. The values of the friction for other values ofu
andf that we considered were of similar magnitude. Usi
the above value for the density of adsorbed molecules,
obtain for the force of friction per unit area of contact 17
3107 dyn/cm2 for kBT/V050.0 and 0.05, 14.8
3107 dyn/cm2 for kBT/V050.2, and 10.43107 dyn/cm2 for
kBT/V050.4. The ratio of this quantity with the above valu
of the normal force per unit contact area is the friction co
ficient. The value that we obtain is consistent with the va
obtained by Muser@8#.

Let us now discuss the velocity dependence of the kin
friction on the basis of this model. Earlier in this section, w
argued that ifv0e2(DE1DEb)/kBT@v/a, a molecule that hops
over a barrier of heightDEb in order to get out of an inter-
face potential well and drop into another well, whose mi
mum energy lies an energyDE below the original well mini-
mum, will just as easily hop back into its original wel
implying the higher well will no longer contribute to th
kinetic friction. It follows that ifv0e2Vmax /kBT@v/a, where
Vmax is an energy such that if the molecule’s energy is abo
this value, it will be able to get out of all of the interfac
potential wells and move over the interface through all of
potential wells. This clearly implies that when the above
equality is satisfied, the picture of molecules dropping fro
metastable equilibria into lower potentials will break dow
because none of the wells will be metastable. The ab
condition for the friction being small can also be written
x5Vmax/@kBT ln(v0a/v)#!1, and in the limitx@1 the fric-
tion will be large. Since we know that in the zero tempe
ture limit we get dry friction, i.e., the friction approaches
constant independent of the velocity, it is reasonable to
sume that the force of friction is given byf 5F(x), where
F(x) is an analytic function which approaches zero asx ap-
proaches zero and approaches a constant as x appro
infinity. The above scaling theory implies that asv ap-
proaches zero, the friction will be proportional toxn, where
n is an integer. There have been several theoretical studie
the Tomlinson model applied to the problem of an atom
8-5
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DALY, ZHANG, AND SOKOLOFF PHYSICAL REVIEW E68, 066118 ~2003!
force microscope~AFM! tip sliding over a periodic substrat
potential at nonzero temperature@9#. These studies give ei
ther a ln(v) or @ ln(v)#2/3 dependence of the friction on th
sliding velocityv of the AFM tip, which seems to agree wit
experiment@10#. These models differ from the model that w
are studying in the sense that in these studies the instabi
that give rise to the friction are macroscopic level instab
ties due to the AFM itself. In contrast, our model ascribes
friction to microscopic level instabilities of the mobile mo
ecules assumed to be at the interface. Therefore, there
reason to expect that both mechanisms should give the s
velocity dependence. Nevertheless, while our velocity
pendence is not the ln(v) dependence found in these studi
@9,10#, its shape does not look qualitatively different from
ln(v) velocity dependence.

Our choice for the scaling parameterx is not unique since,
for example, we could alternatively have chosenx
5(v/v0a)eVmax /kBT. This choice would givef proportional
to vn, but for kBT!Vmax, f will still rise very rapidly to its
zero temperature value. This feature of the velocity dep
dence is independent of how we choosex.

III. LANGEVIN EQUATION CALCULATIONS TO TEST
OUR TREATMENT OF TEMPERATURE

In order to test the validity of our approximate method
treating the effects of temperature, we will now give som
results of calculations that we have done based on the La
vin equation, which should give an accurate treatment of
effects of temperature. In these calculations, the molecu

FIG. 3. Thex coordinate~a! and they coordinate~b! of the
molecule are plotted as functions of time forkBT/V050.3.

FIG. 4. The potential energy is plotted as a function of time
kBT/V050.3.
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initially placed in a potential well which is close to becomin
unstable, meaning that one of its boundaries is relatively l
In these calculations, the surfaces are not sliding. We so
the standard Langevin equation with a damping proportio
to the velocity of the molecule. The damping constant
equal to 1.3 of (our time unit)21. This time unit is equal to
(ma2/V0)1/2, where m is the mass of the molecule. W
present results for thex and y coordinates in Fig. 3 for
kBT/V050.3 and in Fig. 4, the potential energy of the mo
ecule as a function of time.

In Fig. 5 we show thex andy coordinates, and in Fig. 6
we show the potential energy of the molecule as a funct
of time for kBT/V052.0.

We observe that forkBT/V050.3, the molecule drops ou
of its original well to a deeper well and then essentially do
not move very far from the location of this new well in th
time of the simulation, which is the time necessary for
surface sliding at about 1 cm/s to slide about 0.15a. Similar
behavior was found forkBT/V0 as high as 0.7. For jus
slightly higher T, the molecule wanders out of its prese
well into other wells at the interface, which supports t
‘‘step function’’ approximation for the temperature depe
dence used in Sec. II. ForkBT/V052.0, we can see that th
molecule wanders over many lattice constants throughout
interface, presumably passing through a wide range of po
tial energies. Here it is clearly reasonable to assume tha
molecule can be considered to be in thermodynamic equ
rium at all times. At such a high temperature, molecules w

r

FIG. 5. Thex coordinate~a! and they coordinate~b! of the
molecule are plotted as functions of time forkBT/V052.

FIG. 6. The potential energy is plotted as a function of time
kBT/V052.0.
8-6
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FRICTION IN THE ZERO SLIDING VELOCITY LIMIT PHYSICAL REVIEW E 68, 066118 ~2003!
never find themselves in metastable equilibrium positio
which are needed for the mechanism for ‘‘dry frictional d
sipation’’ discussed in this paper to occur. Hence, for su
temperatures there will be no dry friction. Only viscous fri
tion will be possible.

IV. CONCLUSION AND SPECULATIONS
ABOUT STATIC FRICTION

We have extended an adiabatic approximation meth
which we had previously used to calculate kinetic friction
the low velocity limit at zero temperature for the Muse
Robbins model, to nonzero temperature. We have obta
values of the kinetic friction for reasonable values of t
parameters in the model. Our method, which focuses
Tomlinson model-like instabilities that are expected to dom
nate the frictional dissipation in the slow sliding limit, allow
us to gain insight into how this physical mechanism is able
account for kinetic friction.

Let us now make some speculations based on the m
studied in this work about a possible physical reason
static friction being larger than kinetic friction in general.

The largest possible value of the force of static friction
this model will occur if the molecules have enough time
diffuse to the deepest possible potential minima that can
cur at the interface. These will occur whenever a poten
minima from each surface exactly coincide. Because of
quasiperiodic nature of the interface, which occurs when
surfaces are rotated at arbitrary angles with respect to e
other, there can be at most one point on the interface
which two minima can exactly coincide, but there will b
many locations at which minima from the two surfaces c
come arbitrarily close to coinciding.

Let us now attempt to slide the surfaces relative to e
other. Since the two wells will no longer coincide, the loc
tion of the interface potential minimum will no longer be
the location of the minimum of each of the two potent
wells. Thus the two wells will exert equal and oppos
forces on the molecule. This force for each molecule will
along the line joining the minima of the two wells, which
not necessarily along the sliding direction. The componen
the force of static friction along the sliding direction is ju
2]V/]s0, wheres0 is the sliding distance. The compone
perpendicular to the sliding direction was found to be at m
s.

s
n
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11% of the component along the sliding. Since real crys
surfaces have grains oriented with random axis directio
we expect it to average out. Hence we will not consider
We have calculated the force on the molecule due to on
the surfaces for the molecule located at an interface pote
minimum ~which is due to the potentials due to both of th
surfaces! as a function of sliding distance, beginning with th
situation in which the two wells exactly coincide. This forc
clearly reaches its maximum possible value just before
interface well minimum occupied by the molecule disa
pears, i.e. when the well becomes unstable, since tha
when the wells from the two surfaces are farthest from
inciding. The force that must be exerted in order to slide
surfaces relative to each other is the vector sum of the fo
exerted by each molecule on one of the surfaces. The m
mum value is the maximum force of static friction, i.e., th
force that must be applied in order to make the two surfa
slide relative to each other. The maximum force of sta
friction per adsorbed molecule is found to be about 14V0 /a,
which is much larger than the largest value of the aver
force of kinetic friction found in the preceding section~i.e.,
1.29V0 /a). In practice, forkBT much less than the height o
the highest barrier, molecules will not be able to therma
activate over the barriers bounding the deeper wells. Un
such circumstances, the static friction will be much closer
the kinetic friction.

The idea that the static friction gets larger as the t
surfaces are stationary and in contact is in qualitative ag
ment with what is observed for macroscopic surfaces@3#,
although we are certainly not claiming that the present s
plified model is able to account for all the complications
general macroscopic interfaces. It may, however, be sug
tive of possible mechanisms for such phenomena.

It is clear that when the temperature is nonzero, the m
ecule is able to get out of its well sooner, before the fo
that it exerts on one of the surfaces reaches its maxim
value. This implies that the maximum force of static frictio
should decrease as the temperature increases. This poin
also made by Aichele and Muser@8#.
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